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Abstract Hierarchical models offer a principled framework to make inference and 
predictions on different (groups of) observations by leveraging their common fea-
tures. In a nonparametric setting, the borrowing of information is controlled by the 
dependence structure induced on a vector of random measures. Two different hier-
archical specifications are now well-established in the literature: we compare their 
dependence structures, provide some intuition on how to enhance their flexibility, 
and highlight a possibly misleading behaviour of their pairwise covariance. This note 
is based on some recent results in [ 3]. 
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1 Introduction 

Hierarchical random measures represent a key ingredient to nonparametric multi-
level models. This class of models loosens the exchangeability assumption with 
two conceptual steps. First, the distribution of each observation, or each group of 
observations, is modelled through a distinct random measure. μ̃i , by exploiting well-
established transformations, such as normalization [ 21], kernel mixtures [ 8, 18, 19], 
or exponential transformations [ 7]; we refer to [ 17] for a general overview. Then, 
the vector of random measures .(μ̃1, . . . , μ̃d) is modelled as a dependent vector of 
random measures through conditional independence and identity in distribution. 

The dependence between prior random measures guarantees that the predictive 
and posterior distributions will borrow information across groups. This induces a 
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shrinkage effect that often makes the estimates more reliable when only one or 
a few observations per group are observed, and experimentally disappears as the 
number of observations per group diverges. The positive effects of partial pooling 
are well-established in a parametric setting (see, e.g., [ 10]), and are now dominant in 
the nonparametric literature as well (see [ 20] for a recent review). Though the link 
between parametric and nonparametric models is often neglected, we underline that 
they both fit into the framework of partial exchangeability, in which the distribution 
of the observations is invariant with respect to overall permutations that do not move 
observations to different groups. 

Broadly speaking, the specification of the law of a vector of random measures 
.(μ̃1, . . . , μ̃d) amounts to the specification of the marginal distributions.L(μ̃i ), which 
determine how data in each group will be used to estimate the corresponding dis-
tribution and make predictions, and their dependence structure, which determines 
how much influence data in other groups will have in addressing the same tasks. 
These two aspects are fundamentally different, and the practitioner should be able to 
elicit them independently. A very common choice for modelling the marginal distri-
butions .L(μ̃i ) is to consider completely random measures (CRMs), a flexible class 
of random measures that is characterized by the independence of the evaluations 
on disjoint sets. As for the dependence structure, there have been several proposals 
in the literature (e.g., [ 9, 11, 15, 16]). Still, hierarchical forms of dependence are 
arguably the most natural ones for a Bayesian statistician: as observations are usually 
modelled as conditionally independent, it is conceptually straightforward to intro-
duce dependence among the random measures through conditional independence as 
well. Two alternative strategies to model hierarchical completely random measures 
have recently emerged in the literature (see [ 1, 22] and [ 2, 12, 23], respectively). 
Their main difference consists in whether the dependence is introduced through a 
common random probability measure or through an (unnormalized) random mea-
sure, as precisely depicted in (1) and (2) in Sect. 2. In this note, we compare these 
two classes of models and provide some intuition on how to enhance the flexibility 
of their dependence structure. This is based on some recent results in [ 3]. 

2 Hierarchical Completely Random Measures 

Let . X be a Polish space and denote by .M the space of boundedly finite measures on 
. X, equipped with the corresponding Borel .σ-algebra, that is, the smallest .σ-algebra 
that makes the projections .A I→ μ(A) measurable for every measure .μ ∈ M and 
every bounded set . A; see  [  6] for details. A random measure . μ̃ is a random element 
taking values in . M; we focus here on completely random measures, a very natural 
and convenient class of discrete random measures, first introduced in [ 14]. 

Definition 1 A completely random measure (CRM) . μ̃ is a random measure on . X
such that, for any collection of.n ≥ 1bounded and pairwise disjoint sets. A1, . . . , An ∈
X , the random variables .μ̃(A1), . . . , μ̃(An) are mutually independent.
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In the following, we consider CRMs without fixed points of discontinuity and 
without a deterministic drift; their law is characterized by the Laplace transform, for 
any .λ > 0 and any Borel set . A, 

. E

[
e−λμ̃(A)

]
= exp

{
−

{

(0,+∞)×A
(1 − e−λs) ν(ds, dx)

}
,

where . ν is the Lévy intensity measure of the CRM, which uniquely identifies . μ̃ and 
can be any Borel measure on .(0,+∞) × X that satisfies the condition 

. 

{

R+×X

min(s, 1) ν(ds, dx) < ∞.

This characterization motivates the notation .μ̃ ∼ CRM(ν), which denotes a CRM 
with Lévy intensity. ν. In order to simplify the exposition, we only consider homoge-
neous CRMs, for which the Lévy measure. ν can be disintegrated as.ν = ρ ⊗ α, where 
. α is a .σ-finite measure on . X, . ρ is a Lévy measure on .(0,+∞), and .⊗ denotes the 
product measure. We refer to. α as the atom component and to. ρ as the jump compo-
nent of the Lévy intensity, though they are uniquely defined only up to multiplication 
by a constant. 

Example 1 A random measure .μ̃ ∼ CRM(ν) is a (homogeneous) gamma CRM 
with total mass .a > 0 and base probability measure .P0 if 

. ν(ds, dx) = a
e−s

s
ds P0(dx).

Building upon the definition of CRMs, hierarchical structures represent a natural 
way to construct vectors of dependent random measures .(μ̃1, . . . , μ̃d). We focus on 
two different proposals that are now well-established in the literature: 

.μ̃(1)
1 , . . . , μ̃(1)

d | μ̃0 ∼ CRM

(
ρ ⊗ μ̃0

μ̃0(X)

)
, μ̃0 ∼ CRM(ν0); (1) 

.μ̃(2)
1 , . . . , μ̃(2)

d | μ̃0 ∼ CRM (ρ ⊗ μ̃0) , μ̃0 ∼ CRM(ν0), (2) 

where .ν0 = ρ0 ⊗ α0 is the Lévy intensity of .μ̃0. The first construction (1) has been 
mainly exploited to model dependent random probability measures: it was first dis-
cussed in [  22] for the special case of hierarchical Dirichlet processes, which can be 
recovered from gamma CRMs, and extensively studied in [ 1] for the more general 
class of CRMs. The second construction (2) has been adopted to model dependent 
mixture hazard rates [ 2] and dependent feature models [ 12, 23]. 

Note that (1) defines a law for the vector of dependent random measures building 
upon the normalized completely random measure .μ̃0/μ̃0(X); as shown  in  [  21], this 
construction requires the atom component .α0 of .ν0 to be a finite measure, and its 
jump component .ρ0 to have infinite mass around the origin, i.e. .ρ0(R+) = +∞. In
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particular, (1) allows to make inference on CRMs whose atom component is a.s. finite, 
whereas (2) can be adapted to make inference on a.s. infinite measures as well. 

3 Dependence Structure 

Hierarchical constructions introduce dependence between random measures in a very 
interpretable and natural fashion. The amount of dependence between the random 
measures introduced a priori regulates the borrowing of information across different 
populations a posteriori and, as such, it should be carefully elicited. In an ideal 
world where infinite observations for each group are available, one would not need 
to leverage on the information contained in other groups of observations, and the 
borrowing of information would be useless (if not harmful). However, it is often 
the case that only few observations per group are observed, or that the datasets 
are strongly unbalanced: in these scenarios, borrowing information from similar 
populations can be a valuable tool to make inference and predictions more accurate. 

Let .µ̃ = (μ̃1, . . . , μ̃d) be a vector of random measures. One can depict two 
extreme situations: (i) when the random measures are equal almost surely, i.e., 
.μ̃1 = · · · = μ̃d a.s., there is maximal dependence and, since all observations are 
treated as belonging to the same group, full borrowing of information; (ii) when the 
random measures are mutually independent, there is no borrowing of information, 
since the inference for each group is not affected by the observations in other groups. 
This highlights how the amount of prior dependence has a major impact in the learn-
ing mechanism and should be carefully elicited. To this end, one needs a way to 
quantify the dependence between random measures. 

One of the most natural summaries of the dependence structure between two 
random measures is their pairwise covariance structure .Cov(μ̃i (A), μ̃ j (A)), and its 
normalized version, the pairwise correlation .Corr(μ̃i (A), μ̃ j (A)). There have been 
proposals to go beyond pairwise comparisons by using the Wasserstein distance on 
the joint distribution of the vector of random measures [ 4, 5]. However, a decisive 
advantage of the pairwise covariance is that it can be easily evaluated for hierarchical 
models through the law of total covariance and Campbell’s theorem. 

Proposition 1 Let .µ̃(1) = (
μ̃(1)
1 , . . . , μ̃(1)

d

)
as defined in (1). Then, for .i /= j , 

.E

(
μ̃(1)
i (A)

)
=

({
s dρ(s)

)
E

(
μ̃0(A)

μ̃0(X)

)
;

Var
(
μ̃(1)
i (A)

)
= Cov

(
μ̃(1)
i (A), μ̃(1)

j (A)
)

+
({

s2 dρ(s)

)
E

(
μ̃0(A)

μ̃0(X)

)
;

Cov
(
μ̃(1)
i (A), μ̃(1)

j (A)
)

=
({

s dρ(s)

)2

Var

(
μ̃0(A)

μ̃0(X)

)
.
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Proposition 2 Let .µ̃(2) = (
μ̃(2)
1 , . . . , μ̃(2)

d

)
as defined in (2). Then, for .i /= j , 

. E

(
μ̃(2)
i (A)

)
=

({
s dρ(s)

)
E(μ̃0(A));

Var
(
μ̃(2)
i (A)

)
= Cov

(
μ̃(2)
i (A), μ̃(2)

j (A)
)

+
({

s2 dρ(s)

)
E(μ̃0(A));

Cov
(
μ̃(2)
i (A), μ̃(2)

j (A)
)

=
({

s dρ(s)

)2

Var(μ̃0(A)).

The mean and the variance of both the CRM.μ̃0 and its normalization . μ̃0/μ̃0(X)

may be easily expressed in terms of the Lévy measure.ν0 by using Campbell’s theorem 
and the techniques in [ 13], as in the next example. 

Example 2 In the hierarchical gamma process, both.μ̃0 and.μ̃i | μ̃0 are gamma com-
pletely random measures, as introduced in Example 1. This implies that. 

{
s dρ(s) ={

s2 dρ(s) = a and.E(μ̃0(A)) = Var(μ̃0(A)) = a0P0(A), while . E(μ̃0(A)/μ̃0(X)) =
P0(A) and .Var(μ̃0(A)/μ̃0(X)) = P0(A)(1 − P0(A))/(1 + a0). In particular, for 
every Borel set . A such that .0 < P0(A) < 1, 

. E

(
μ̃(1)
i (A)

)
= aP0(A); Var

(
μ̃(1)
i (A)

)
= a2P0(A)(1 − P0(A))

1 + a0
+ aP0(A);

Cov
(
μ̃(1)
i (A), μ̃(1)

j (A)
)

= a2P0(A)(1 − P0(A))

1 + a0
;

Corr
(
μ̃(1)
i (A), μ̃(1)

j (A)
)

= a(1 − P0(A))

a(1 − P0(A)) + 1 + a0
;

E

(
μ̃(2)
i (A)

)
= aa0P0(A); Var

(
μ̃(2)
i (A)

)
= a(a + 1)a0P0(A);

Cov
(
μ̃(2)
i (A), μ̃(2)

j (A)
)

= a2a0P0(A); Corr
(
μ̃(2)
i (A), μ̃(2)

j (A)
)

= a

1 + a
.

Propositions 1 and 2 contain important information about the dependence struc-
ture of hierarchical models. We elaborate on these results by first highlighting two 
desirable flexibility properties characterizing random measures with positive associ-
ation. The first kind of flexibility ensures that, for every value.γ ∈ [0, 1], there exists 
a specification of the model parameters such that the random measures have correla-
tion equal to (or converging to) . γ. By looking at the expressions in Example 2, one 
can easily check this property to be true for both hierarchical gamma processes; more 
generally, this flexibility property holds for both hierarchical models we have intro-
duced. The second kind of flexibility is stronger and asks that, for every marginal law 
of the random measures and for every value .γ ∈ [0, 1], there exists a specification 
of the model parameters such that the random measures have correlation equal to 
(or converging to) . γ. This flexibility property ensures that the marginal laws of the 
random measures may be elicited separately from their dependence structure. As we 
underlined in the introduction, this is a desirable feature since the marginal laws and
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Fig. 1 Samples from.µ̃(2,β)(A) = (
μ̃
(2,β)
1 (A), μ̃

(2,β)
2 (A)

)
, where.β = 1 (left),.β = 100 (right), and 

. A is a set with.P0(A) = 1/2. The covariance is the same,. Cov
(
μ̃
(2,β)
1 (A)), μ̃

(2,β)
2 (A)

) = 1/2

the dependence encode very different aspects of the model: the former shapes the 
distribution of a group of observations, the latter regulates the impact of the other 
groups. For simplicity, one can restrict to a slightly weaker form of this second kind 
of flexibility, where one only considers every possible value of the mean and the 
variance of the random measures, instead of every marginal law. 

Interestingly, most hierarchical models currently used in the literature do not 
achieve the second type of flexibility. As an example, consider the gamma hierarchical 
random measures.µ̃(2) defined in Example 2. As highlighted by the expression of the 
correlation, one can have perfect dependence, i.e. .μ̃(2)

1 = μ̃(2)
2 a.s., only if .a → +∞; 

however, in such case, the expected value of the marginals diverges. This suggests 
that a good practice for hierarchical gamma random measures of type (2) is to fix  
.a0 = 1/a, so that .E

(
μ̃(2)
i (A)

) = P0(A) and thus the dependence structure does not 
affect the mean of the random measure. However, with such choice of parameters 
.Var

(
μ̃(2)
i (A)

) = (a + 1)P0(A), which in turn implies that the only way to recover 
perfectly correlated random measures is to have infinite variance. In short, we are 
not able to achieve the flexibility of second kind. 

It is worth underlying that such issues do not appear for the hierarchical gamma 
measure.µ̃(1) in Example 2, as clarified by comparing the expressions for the covari-
ances in Propositions 1 and 2. Indeed, if .μ̃0 is a gamma CRM as in Proposition 2, 
its mean and variance coincide, whereas the variance of the normalization. μ̃0/μ̃0(X)

can be adjusted separately from its expected value, which is the situation of Propo-
sition 1. This suggests a possible way to adjust the hierarchical models of type (2) 
in order to ensure the flexibility of second kind as well: we should consider other 
classes of random measures for .μ̃0, where a suitable hyperparameter can be set to 
flexibly account for different values of the variance.
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4 Discussion 

In this note, we have discussed how hierarchical constructions represent a natural 
and intuitive way to model the dependence between random measures; however, its 
elicitation can be subtle, since adjusting the dependence often affects the marginal 
distributions as well. For the same reason, the covariance is not a reliable measure 
of dependence: given that changing the covariance also affects the variance, the 
normalization required to compute the correlation is not only a way to obtain values 
in .[0, 1], but also provides important information about the dependence structure. 
This is showcased by the following simple example. For.β > 0, consider the bivariate 
vectors of hierarchical random measures 

. μ̃
(2,β)
1 , μ̃

(2,β)
2 | μ̃0 ∼ CRM

(
β
e−βs

s
ds ⊗ μ̃0

)
, μ̃0 ∼ CRM

(
e−s

s
ds ⊗ P0

)
.

One can easily prove that the covariance .Cov
(
μ̃
(2,β)
1 (A)), μ̃

(2,β)
2 (A)

) = P0(A) stays 

the same for every value of . β. On the other hand, the dependence structure of . µ̃(2,β)

appears to be very different for different values of . β, as depicted in Fig. 1 for . β = 1
and.β = 100. This feature is correctly detected by the correlation, which is equal to 
.Corr

(
μ̃
(2,β)
1 (A)), μ̃

(2,β)
2 (A)

) = β/(1 + β) and thus goes to 1 as .β → +∞. 

5 Proofs 

Proof (Propositions 1 and 2) Thanks to the tower property, 

. E

(
μ̃(1)
i (A)

)
= E

(
E

(
μ̃(1)
i (A) | μ̃0

))
=

({
s dρ(s)

)
E

(
μ̃0(A)

μ̃0(X)

)
,

E

(
μ̃(2)
i (A)

)
= E

(
E

(
μ̃(2)
i (A) | μ̃0

))
=

({
s dρ(s)

)
E(μ̃0(A)).

The law of total covariance yields, for .k = 1, 2 and .i /= j , 

. Cov
(
μ̃(k)
i (A), μ̃(k)

j (A)
)

=
= E

(
Cov

(
μ̃(k)
i (A), μ̃(k)

j (A)
)

| μ̃0

)
+Cov

(
E

(
μ̃(k)
i (A) | μ̃0

)
, E

(
μ̃(k)

j (A) | μ̃0

))

= Cov
(
E

(
μ̃(k)
i (A) | μ̃0

)
, E

(
μ̃(k)

j (A) | μ̃0

))
= Var

(
E

(
μ̃(k)
i (A) | μ̃0

))
,

where
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. Var
(
E

(
μ̃
(1)
i (A) | μ̃0

))
=Var

({
s dρ(s)

μ̃0(A)

μ̃0(X)

)
=

({
s dρ(s)

)2
Var

(
μ̃0(A)

μ̃0(X)

)
,

Var
(
E

(
μ̃
(2)
i (A) | μ̃0

))
= Var

({
s dρ(s) μ̃0(A)

)
=

({
s dρ(s)

)2
Var (μ̃0(A)) .

Similarly, one can also compute the variances: for .k = 1, 2, 

. Var
(
μ̃(k)
i (A)

)
= E

(
Var

(
μ̃(k)
i (A) | μ̃0

))
+ Var

(
E

(
μ̃(k)
i (A) | μ̃0

))
,

where the expressions of .Var
(
E

(
μ̃(k)
i (A) | μ̃0

))
can be found above, and 

. E

(
Var

(
μ̃(1)
i (A) | μ̃0

))
= E

({
s2 dρ(s)

μ̃0(A)

μ̃0(X)

)
=

({
s2 dρ(s)

)
E

(
μ̃0(A)

μ̃0(X)

)
,

E

(
Var

(
μ̃(2)
i (A) | μ̃0

))
= E

({
s2 dρ(s) μ̃0(A)

)
=

({
s2 dρ(s)

)
E (μ̃0(A)) .
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