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Competing risks in survival analysis

In survival analysis, researchers may be interested in different types of events (sources of

risk), which are competing events if the occurrence of an event prevents the occurrence

of other events [4].

Multi–state approach to competing risks

Competing risks data are modelled through multi–state models with a transient state

(alive) and multiple absorbing states (causes of death):

the time-to-event T ∈ R+ is the time

of transition away from state 0;

the cause of death ∆ ∈ {1, . . . , D} is

the target absorbing state;

the cause–specific hazard rates h1(t),
. . . , hD(t) are the transition rates.

Functionals of interest in competing risks

The main quantities of interest in a competing risks framework are:

the survival function, i.e. the probability of surviving every competing event up to a

certain time,

S(t) = P(T ≥ t) = exp

(
−

D∑
δ=1

∫ t

0
hδ(u) du

)
;

the cause–specific cumulative incidence functions, i.e. probabilities of experiencing

a certain type of event within a certain time;

(prediction viewpoint) the probabilities of experiencing a certain type of event, given

the survival time, termed prediction curves,

πδ(t) = P(∆ = δ | T = t), δ = 1, . . . , D.

Modeling mixture hazard rates

In a Bayesian setting, a prior is defined over hazard rate functions [3], i.e. the instanta-

neous risks of occurrence of each competing event, given survival up to that time:

h̃δ(t) =
∫
R+

k(t; x) dµ̃δ(x), δ = 1, . . . , D,

where k(t, x) is a deterministic kernel and µ̃1, . . . , µ̃D are increasing random processes.

The model for an exchangeable sequence of time-to-event and event type pairs is

(T1, ∆1), . . . , (Tn, ∆n) | µ̃
i.i.d.∼ p̃, µ̃ = (µ̃1, . . . , µ̃D) ∼ Q,

where the directing random probabilitymeasure p̃ depends on random processes through

hazard rates:

p̃(dt, δ) =
∫
X

k(t; x) dµ̃δ(x)︸ ︷︷ ︸
hazard rate for cause δ

exp

(
−

D∑
`=1

∫ t

0

∫
X

k(s; x) dµ̃`(x)︸ ︷︷ ︸
hazard rate for cause `

ds

)
dt.

Hierarchical prior specification

The prior specification Q introduces dependence among hazard rates through a hierar-

chical structure of completely random measures (increasing Lévy processes) [2]:

µ̃1, . . . , µ̃D | µ̃0
i.i.d.∼ CRM(ν̃), µ̃0 ∼ CRM(ν0),

having homogeneous Lévy intensities

dν̃(s, x) = ρ(s) dµ̃0(x), dν0(s, x) = ρ0(s) dP0(x).

A natural choice for hierarchical CRMs is the hierarchical gamma process.

Latent variables and partition structure

The marginal, predictive and posterior distributions are conveniently described via the

introduction of two sequences of latent variables:

X = (X1, . . . , Xn), Z = (Z1, . . . , Zn).

Because of the discreteness of CRMs, variables in each sequence admit tieswith positive

probability → nested partition structure (Chinese restaurant franchise metaphor [5]).

Posterior characterization

The posterior distribution of random processes, given observations and latent variables,

is structurally conjugate, as the hierarchical form is preserved a posteriori:

µ̃δ(x) | (T , ∆, X, Z), µ̃0 ∼ µ̃∗(x) +
k∑

j=1
Jδj (x ≥ X∗

j ),

µ̃0(x) | (T , ∆, X, Z) ∼ µ̃∗
0(x) +

k∑
j=1

Ij (x ≥ X∗
j ),

where µ̃∗ and µ̃∗
0 are CRMs with non–homogeneous Lévy intensities, while Jδj’s and Ij’s

are independent random variables.

Numerical illustration on simulated data

Consider three independent competing risks and record the minimum time–to–event and

the corresponding event type, for n = 300 observations.

Survival function Cumulative incidence functions

Prediction curves

Full conditional distributions of latent

variables (X, Z) are derived from the

marginal distribution, and exploited to

devise a Gibbs sampling scheme.

Posterior estimates of quantities of

interest are obtained at each step,

conditionally on latent variables.

Application to bone marrow transplant data

The dataset includes data for 400 patients diagnosed with acute myeloid leukemia, who

underwent a bone marrow transplantation:

the primary event of interest is occurrence of Graft–versus–Host-Disease (GvHD);

death or relapse without GvHD are competing events.

Cumulative incidence functions Prediction curves

Results are displayed for patients receiving graft from bone marrow cells.
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